Experimental realization of an achromatic magnetic mirror based on metamaterials.
نویسندگان
چکیده
Our work relates to the use of metamaterials engineered to realize a metasurface approaching the exotic properties of an ideal object not observed in nature, a "magnetic mirror." Previous realizations were based on resonant structures that implied narrow bandwidths and large losses. The working principle of our device is ideally frequency-independent, it does not involve resonances and it does not rely on a specific technology. The performance of our prototype, working at millimeter wavelengths, has never been achieved before and it is superior to any other device reported in the literature, both in the microwave and optical regions. The device inherently has large bandwidth (144%), low losses (<1%), and is almost independent of incidence angle and polarization state, and thus approaches the behavior of an ideal magnetic mirror. Applications of magnetic mirrors range from low-profile antennas, absorbers to optoelectronic devices. Our device can be realized using different technologies to operate in other spectral regions.
منابع مشابه
Design of Dual-Band Double Negative Metamaterials
A dual-band artificial magnetic material and then a dual-band double-negative metamaterial structure based on symmetric spiral resonators are presented. An approximate analytical model is used for the initial design of the proposed structures. The electromagnetic parameters of the proposed metamaterial structure retrieved using an advanced parameter retrieval method based on the causality princ...
متن کاملMeta-Chirality: Fundamentals, Construction and Applications
Chiral metamaterials represent a special type of artificial structures that cannot be superposed to their mirror images. Due to the lack of mirror symmetry, cross-coupling between electric and magnetic fields exist in chiral mediums and present unique electromagnetic characters of circular dichroism and optical activity, which provide a new opportunity to tune polarization and realize negative ...
متن کاملExperimental verification of plasmonic cloaking at microwave frequencies with metamaterials.
Plasmonic cloaking is a scattering-cancellation technique based on the local negative polarizability of metamaterials. Here we report its first experimental realization and measurement at microwave frequencies. An array of metallic fins embedded in a high-permittivity fluid has been used to create a metamaterial plasmonic shell capable of cloaking a dielectric cylinder, yielding over 75% reduct...
متن کاملA Magnetic Wormhole
Wormholes are fascinating cosmological objects that can connect two distant regions of the universe. Because of their intriguing nature, constructing a wormhole in a lab seems a formidable task. A theoretical proposal by Greenleaf et al. presented a strategy to build a wormhole for electromagnetic waves. Based on metamaterials, it could allow electromagnetic wave propagation between two points ...
متن کاملStructuring Light by Concentric-Ring Patterned Magnetic Metamaterial Cavities.
Ultracompact and tunable beam converters pose a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. Here we design and demonstrate concentric-ring patterned structures of magnetic metamaterial cavities capable of tailoring both polarization and phase of light by converting circularly polarized light into a vector beam w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 55 18 شماره
صفحات -
تاریخ انتشار 2016